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ABSTRACT
This paper discusses the tracking control problem for a class

of multi-input-multi-output (MIMO) mismatched linear systems,
where there are disturbances in different channels from thecon-
trol input and the real-time feedback signal is not the output of
interest. This mismatch makes it difficult to achieve high tracking
performance for the interested output. To address this problem,
two model based iterative learning control (ILC) algorithms,
namely reference ILC and torque ILC, are designed for differ-
ent injection locations in the closed loop system. An ad hoc hy-
brid scheme is proposed to make transitions between the two ILC
stages for them to work properly at the same time. The proposed
scheme is validated through the experimental study on a single-
joint indirect drive system.

INTRODUCTION
In industrial applications, the automated system (e.g., the

robotic manipulator) is often required to repeatedly perform a
single task under the same operating conditions. If the system
repeatability is good, the trajectory tracking error will become
repetitive from one run to another. In this case, the iterative learn-
ing control (ILC) scheme is well suited to compensate for the
repeatable tracking error [1,2].

Iterative learning control is a data-driven methodology
which iteratively utilizes the data (e.g., error profile) from previ-
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ous trails to update the system inputs for the next iteration. Many
variations of the ILC scheme have been studied for various ap-
plications [1]. Most of them, however, are developed for thefun-
damental case where the system has direct measurement of the
interested output for real-time feedback and does not have dis-
turbances in the channels different from the control input.There-
fore, in mismatched systems where the above scenario does not
hold, the standard ILC performance will be limited and in some
cases the ILC convergence is hard to guarantee.

The mismatched systems discussed in this paper are com-
mon in practical applications, e.g., the industrial robotswith
indirect-drive joint mechanisms (joints with elasticity). Sev-
eral feedback control approaches, such as integrator backstep-
ping [3], dynamic surface control [4], and adaptive robust con-
trol [5], have been developed specifically to deal with thesemis-
matched systems. Some efforts have been devoted to migrat-
ing these ideas to the field of ILC to deal with the mismatched
uncertainty iteratively while exploiting the noncausal repetitive-
ness. A two-stage ILC approach was proposed in [6] to deal with
robots with joint elasticity. Similar to backstepping, thereal-
time measured output (i.e., motor side state) is utilized in[6] as
a hypothetical input to control the output of interest (i.e., load
side state). As shown later in this paper, the convergence rate of
this learning process may be adversely affected and thus theuse
of a high bandwidthQ filter to learn high frequency error may
compromise stability. Other studies such as [7] also reported the
compromise on the tracking performance they had to make for a
better learning convergence. This is especially the case when the
system exhibits mismatched uncertainties. Regarding thisstabil-
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ity issue under uncertainty, various robust approaches have been
proposed [8, 9]. The resulting algorithms are usually nontrivial
and the performance is normally compromised for a conservative
robust controller. In [9], it requires the plant resonancesto be
suppressed by feedback compensation in order for the proposed
method to improve the robustness to high-frequency modeling
errors. In [10], a model-based ILC approach was developed for
elastic robots to learn the error component beyond the first res-
onant frequency. However, this approach requires an accurate
piecewise-linear model to be identified and interpolated for each
trajectory in advance, which limits its application.

This paper will propose a hybrid two-stage model-based ILC
approach for a class of MIMO mismatched linear systems. The
two-stage ILC is aimed to push the learning algorithm to a higher
bandwidth while maintaining the fast model-based convergence
rate. The paper is organized as follows. The system model and
the basic controller structure are introduced first. Then two ILC
schemes are designed independently followed by an ad hoc hy-
brid scheme to enable the two ILC schemes to execute simulta-
neously. The experimental study on a single-joint indirectdrive
system is presented next to validate the effectiveness of the pro-
posed scheme. The parametric uncertainty and mismatched dy-
namics such as various disturbances at different locationsof the
system will be addressed. The conclusions of this work will be
given at last.

SYSTEM OVERVIEW
System Model

Consider a MIMO mismatched linear system in the follow-
ing discrete time state space form

x( j +1) = Ax( j)+Buu( j)+Bdd( j) (1)

y( j) =
[

qT
m( j), qT

ℓ ( j)
]T

=Cx( j)+Duu( j)+Ddd( j) (2)

wherej is the time step index.x∈R
nx is the system state,u∈R

nu

is the control input,d ∈ R
nd is the lumped disturbance,qm ∈

R
nm andqℓ ∈ R

nℓ are the two outputs of the plant.d is regarded
as the mismatched uncertainty/disturbance if it (or part ofit) is
applied to different channels from the control inputu (i.e.,Bu 6=
αBd,∀α ∈R). Another mismatched assumption is that, only part
of the outputs (i.e.,qm) is measured for real-time feedback, even
if the output of interest may beqℓ. However, the measurement of
qℓ may be available for iteration based off-line use. Furthermore,
besides the unknown mismatched dynamics, it is assumed that
parametric uncertainties exist in the available nominal model.

This system can be reformulated as

qm( j) = Pmu(z)u( j)+Pmd(z)d( j) (3)

qℓ( j) = Pℓu(z)u( j)+Pℓd(z)d( j) (4)
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FIGURE 1. Control Structure with Reference & Torque Update

wherePmu, Pmd, Pℓu, andPℓd are the transfer functions fromu
or d to the corresponding output. For simplicity, the following
control scheme is formulated for the case wherePmu andPℓu are
diagonal matrices. However, it may be possible to extend this
work to a more general case by considering the plant inversion
and commutative multiplication for the non-diagonal matrices.

Basic Controller Structure
Figure 1 illustrates the control structure for this mismatched

system, where the subscriptk is the iteration index. It consists of
two feedforward controllers,F1 andF2, and one feedback con-
troller, C. Here,C can be any linear feedback controller such
as a decoupled PID controller to stabilize the system. The feed-
forward controllers,F1 andF2, are designed using the nominal
inverse model as

qmd,k( j) = P̂mu(z)P̂
−1
ℓu (z)qℓd,k( j) , F1(z)qℓd,k( j) (5)

τln,k( j) = P̂−1
mu(z)

[

qmd,k( j)+ rq,k( j)
]

, F2(z)q̄md,k( j) (6)

where•̂ is the nominal model representation of•. qℓd,k is the de-
sired plant output forqℓ,k. rq,k andτnl,k are used as the additional
reference and feedforward torque updates generated iteratively
by the two-stage ILC algorithm designed later.

TWO-STAGE ILC SCHEME
ILC Basics

Some basics of the general ILC scheme are reviewed first,
which will be utilized in the subsequent ILC scheme design.
Consider the MIMO linear system with the error dynamics and
the ILC law in the following form

ēk( j) = −Peu(z)ūk( j)+ r̄( j) (7)

ūk+1( j) = Q(z) [ūk( j)+L(z)ēk( j)] (8)

whereē is the error that the ILC scheme aims to reduce, ¯r is
the lumped repetitive reference and/or disturbance input to the
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system, and ¯u is the control input updated iteratively by the ILC
scheme using the filtersL(z) andQ(z). Similar to [1, 11], the
following convergence property holds:

Theorem 1. The ILC system(7)-(8) is monotonically and ex-
ponentially convergent in the sense that‖ūk− ū∞‖p → 0 and
‖ēk− ē∞‖p → 0 as k→ ∞, if

β = ‖Q(z) [I −L(z)Peu(z)]‖p < 1 (9)

whereβ is the rate of convergence, I is the identity matrix with
appropriate dimension, the p-norm‖ • ‖p = (∑i | •i |

p)1/p, and

ū∞( j) = [I −Q(z)+Q(z)L(z)Peu(z)]
−1Q(z)L(z)r̄( j) (10)

ē∞( j) = [I −Q(z)+Q(z)L(z)Peu(z)]
−1 [I −Q(z)] r̄( j) (11)

Proof. First, with (7) and (8), it is easy to see that

ūk+1( j) = Q(z) [I −L(z)Peu(z)] ūk( j)+Q(z)L(z)r̄( j) (12)

which yields

‖ūk+1− ū∞‖p = ‖Q(z) [I −L(z)Peu(z)] (ūk− ū∞)‖p

≤ ‖Q(z) [I −L(z)Peu(z)]‖p‖ūk− ū∞‖p (13)

Therefore, if‖Q(z) [I −L(z)Peu(z)]‖p < 1, ‖ūk− ū∞‖p → 0 as
k→ ∞. With (7), similar conclusion can be drawn for the conver-
gence of ¯ek. Note that the inverse[I −Q(z)+Q(z)L(z)Peu(z)]

−1

exists because‖Q(z)[I −L(z)Peu(z)]‖p < 1. �

Equation (11) shows that the steady state error ¯e∞ vanishes
with complete learning (i.e.,Q(z) = I ), which means the effects
on ē∞ from the repetitive input ¯r will be fully compensated. The
ILC law (8) implies theQ filter can also be used to shape the
learning ability in the frequency domain. In order to achieve bet-
ter performance, it is desired to push the bandwidth ofQ(z) to
be as high as possible. Equation (9), however, indicates that the
bandwidth ofQ(z) may have to be compromised to ensure mono-
tonic convergence and to avoid poor transients in the learning
process. In practice, a low-pass filterQ(z) is typically employed
to prevent the effects of high frequency model uncertainties from
entering the learning process [1]. Also,Q(z) should be unity
gain at low frequencies where complete learning is preferred to
achieve zero steady state error. Since the ILC scheme is an of-
fline iteration based method, acausal filtering can be utilized to
obtain a zero-phase learning response.

Given a fixedQ filter, the optimal learning filter to achieve
the fastest convergence is obtained as

L∗(z) = argmin
L(z)

‖Q(z) [I −L(z)Peu(z)]‖p (14)

This leads to the plant inversion choice, i.e.,L∗(z) =P−1
eu (z). This

model matching problem can be solved with many optimization
techniques, such as theH∞ synthesis [8], if the model uncertainty
bound is known. The designedQ(z) andL(z) need to be validated
using (9) with the knowledge of system model uncertainty. With-
out loss of generality, the optimal learning filter in this paper is
simply chosen asL∗(z) = P̂−1

eu (z).

ILC With Reference Update
Denote the sensitivity function of the closed loop system in

Fig. 1 asSp(z) = [I +C(z)Pmu(z)]
−1. From (5),qmd,k is related

to qd,k (i.e.,qℓd,k or qmd,k) as follows

qmd,k = P̂muP̂
−1
u qd,k (15)

wherePu can be eitherPmu or Pℓu depending on the choice ofqd,k.
The time indexj for all signals and the discrete time operatorz
for all transfer functions are omitted hereafter for simplicity. The
system outputqk (i.e.,qm,k or qℓ,k) can be derived as

qk = Puuk+Pddk (16)

= PuSp
[

(C+ P̂−1
mu)(qmd,k+ rq,k)+ τnl,k−CPmddk

]

+Pddk

= P̂−1
muPuSpŜ−1

p rq,k+PuSp
(

P̂−1
u Ŝ−1

p qd,k+ τnl,k−CPmddk
)

+Pddk

The corresponding tracking errorek is

ek = qd,k−qk = −P̂−1
muPuSpŜ−1

p rq,k+(I −PuSpP̂−1
u Ŝ−1

p )qd,k

−PuSpτnl,k+(PuSpCPmd−Pd)dk

, −Peu,rrq,k+ r̄r,k (17)

The tracking performance of the next iteration can be improved
with the reference update scheme (namely reference ILC (L) or
reference ILC (M) depending on the choice ofek) as

rq,k+1 = Qr(rq,k+Lrek) (18)

Assume the desired trajectoryqd,k, the feedforward
torque updateτnl,k, and the disturbancedk are repetitive for
each iteration. From Theorem 1, the monotonic conver-
gence of this ILC scheme (18) can be guaranteed ifβr =
∥

∥Qr(1−LrP̂−1
muPuSpŜ−1

p )
∥

∥

∞ < 1. With the inversion of the nomi-
nal model in (17), the optimal learning filter and the convergence
rate are obtained as

L∗
r = P̂−1

eu,r = P̂−1
u P̂mu (19)

β ∗
r =

∥

∥Qr(I − P̂−1
u PuSpŜ−1

p )
∥

∥

∞ < 1 (20)
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and with complete learning (i.e.,Qr = I ), the tracking errore∞
vanishes. In order to achieve fast convergence rate withoutcom-
promising the bandwidth ofQr , it is desired to reduce the model
uncertainties. This can be done by either obtaining a nominal
modelP̂u more accurately representing the actual physical plant,
or in contrast, making the inner plant (blue shaded area in Fig. 1)
behave as the chosen nominal modelP̂u. In the next section, an
ILC scheme with torque update is introduced to achieve the latter
objective, i.e., makingqk → P̂uµk, whereµk = τln,k+ τ f b,k is the
torque input to the inner plant.

ILC With Torque Update
Defineep,k as the model following error between the nomi-

nal plant output (i.e.,qp,k , P̂uµk) and the actual plant outputqk

(i.e.,qℓ,k or qm,k). The ILC scheme to reduce this model follow-
ing errorep,k can be formulated as

ep,k = P̂uµk−qk , qp,k−qk (21)

τnl,k+1 = Qu
(

τnl,k+Luep,k
)

(22)

whereP̂u is P̂ℓu or P̂mu to match with the choice ofqk. The corre-
sponding ILC is termed as torque ILC (L) or torque ILC (M).

It shows thatτnl,k is used to cancel out the effects onqk from
model uncertainty∆P, Pu− P̂u and mismatched disturbancedk.
The idealτ∗nl,k to achieve this objective can be derived as

P̂uµk = Pu(µk+ τ∗nl,k)+Pddk

⇒ τ∗nl,k =−P−1
u (∆Pµk+Pddk) (23)

In the mismatched systems, the two objectives, followingP̂mu

(i.e., torque ILC (M)) and followingP̂ℓu (i.e., torque ILC (L)),
cannot be reached simultaneously (i.e.,τ∗nl,mk 6= τ∗nl,ℓk), since

P−1
muPmd 6= P−1

ℓu Pℓd andP−1
mu∆Pm 6=P−1

ℓu ∆Pℓ in general. This means
at this stage it is desired to select the nominal model to match
with the chosen one in the reference ILC stage.

Convergence of Model Following Error The input-
output equation of the nominal plant can be derived as

qp,k , P̂uµk (24)

= P̂uSp
[

(C+ P̂−1
mu)(qmd,k+ rq,k)−CPmuτnl,k−CPmddk

]

Then from (16) and (24), the model following errorep,k becomes

ep,k = qp,k−qk = −TuSpτnl,k−∆PSp(C+ P̂−1
mu)(qmd,k+ rq,k)

+(∆PSpCPmd−Pd)dk

, −Peu,uτnl,k+ r̄u,k (25)

whereTu = P̂uCPmu+Pu.
Therefore, if the desired trajectoryqmd,k, the reference up-

daterq,k, and the disturbancedk remain the same for each itera-
tion, by Theorem 1, the torque ILC scheme (22) will be mono-
tonically converging ifβu =

∥

∥Qu (I −LuTuSp)
∥

∥

∞ < 1. By using
the nominal plant inversion, the optimal choice ofLu with dead-
beat convergence rateβ ∗

u becomes

L∗
u = P̂−1

eu,u = Ŝ−1
p T̂−1

u = P̂−1
u (26)

β ∗
u =

∥

∥Qu
(

I −PuP̂−1
u

)

Sp
∥

∥

∞ < 1 (27)

and with complete learning (i.e.,Qu = I ), the inner plant behaves
like the nominal model as the model following errorep,∞ → 0.

Convergence of Tracking Error Using (17) and (25),
the tracking errorek can be derived as

ek = PuT−1
u ·

[

ep,k+ P̂muC
(

P−1
u PmuP̂uP̂−1

mu − I
)

qd,k

−
(

P̂−1
mu +C

)

P̂urq,k+CP̂u
(

Pmd−PdPmuP
−1
u

)

dk

]

(28)

By assumption,qd,k, rq,k, anddk do not vary from one iteration to
another. Thus the tracking errorek will also converge monoton-
ically with the rate ofβe ≤ ‖PuT−1

u ‖∞βu if the model following
errorep,k converges andPuT−1

u is BIBO stable.
Note that for torque ILC (M),P−1

u PmuP̂uP̂−1
mu − I = 0 and

Pmd−PdPmuP−1
u = 0, which further reduces (28) to

ek = PuT−1
u

[

ep,k− (P̂−1
mu +C)P̂urq,k

]

(29)

Thus if rq,k = 0 (i.e., the reference ILC is not activated),ek → 0
asep,k vanishes. For torque ILC (L), this is not true due to the
mismatched behavior. The remaining tracking errore∞ is

e∞ = PuT−1
u

[

P̂muC
(

P−1
u PmuP̂uP̂−1

mu − I
)

qd,∞

−(P̂−1
mu +C)P̂urq,∞ +CP̂u(Pmd−PdPmuP

−1
u )d∞

]

, −Peu,urrq,∞ + r̄ur,∞ (30)

which can be further eliminated through the reference ILC using
L∗

r = P̂−1
eu,ur = P̂−1

u P̂mu, and this matches with (19).

Hybrid Scheme With Two-Stage ILC
In general, for the closed loop system with a satisfactory

feedback controller, the sensitivity functionSp will behave as a
high-pass filter to mitigate the low frequency error. Therefore,
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in the convergence condition (27), the low frequency model un-
certainty is greatly suppressed bySp. This allowsQu to have
higher bandwidth without worrying about the low frequency un-
certainty. Then with the effects of the torque ILC, the innerplant
will behave like the nominal model (i.e.,qk → P̂uµk) up to the
bandwidth ofQu. Within this frequency range, the convergence
condition of the reference ILC (20) will be simplified to

βr ≈
∥

∥Qr
(

I −SpŜ
−1
p

)∥

∥

∞ < 1 (31)

which allows to pushQr to a higher bandwidth for better tracking
performance.

Note that the repetitive assumption is used in the derivation
of the aforementioned two ILC schemes. When these two ILC
schemes are activated simultaneously, the repetitive assumption
will be no longer valid (i.e.,rq,k andτnl,k are not repetitive from
one iteration to another). Therefore, an ad hoc hybrid scheme
is designed to reduce the adverse interference of the two ILC
stages. Specifically, an iteration-varying gain is appliedto each
ILC stage as follows

τnl,k+1 = Qu
(

τnl,k+ γu,kLuep,k
)

(32)

rq,k+1 = Qr(rq,k+ γr,kLrek) (33)

where the two gainsγu,k andγr,k can be tuned by trial and error,

e.g.,γu,k = min(4∑ j ‖ep,k( j)‖2

∑ j ‖ep,1( j)‖2
,1) andγr,k = 1− 1

2γu,k. The basic

idea behind is that the torque ILC needs to take more effects
whenever the model following error becomes larger in the previ-

ous iteration (i.e.,∑ j ‖ep,k( j)‖2

∑ j ‖ep,1( j)‖2
increases). In order for the torque

ILC to perform better, the effects of the reference ILC is accord-
ingly attenuated with a decreasedγr,k. In contrast, once the model
following error is sufficiently small (i.e., the inner plantbehaves
as the nominal model), the torque ILC becomes not necessary
and the reference ILC can be fully activated.

As shown in (29), for the application of trackingqm, the
reference ILC is not necessary and the torque ILC (M) with
P̂u = P̂mu will be sufficient. In order to trackqℓ, however, the
aforementioned hybrid two-stage ILC scheme withP̂u = P̂ℓu will
be necessary. And it is understood that the nominal models used
in two ILC stages should match with each other due to the mis-
matched dynamics. In the experimental study, the algorithmval-
idation will focus on the case of trackingqℓ to test the effective-
ness of the hybrid two-stage ILC scheme.

EXPERIMENTAL STUDY
Experimental Setup & Dynamic Model

The proposed method is validated on a single-joint indirect
drive robot shown in Fig. 2. This experimental setup consists of:

Encoder
Encoder Harmonic 

Drive

Payload

Motor

u

JB

kC , dC

Reducer

Load Inertia

θD

Motor

JE θF

dGH

fIJ, dI

fKL, dK

N, θ̃

dMN

FIGURE 2. Single-Joint Indirect Drive System Setup

1) a servo motor with a 20,000 counts/revolution encoder, 2) a
harmonic drive with a 80:1 gear ratio, 3) a load side 144,000
counts/revolution encoder, and 4) a payload. The anti-resonant
and resonant frequencies of the setup are approximately 11Hz
and 19Hz. It is assumed that the load side encoder measurement
is only available for iteration based offline use rather thanfor
real-time feedback use. Finally, the algorithms are implemented
using a 1kHz sampling rate in a LabVIEW real-time target in-
stalled with LabVIEW Real-Time and FPGA modules.

Figure 2 also illustrates the schematic of the single-jointin-
direct drive mechanism. The subscriptsmandℓ denote the motor
side and the load side quantities, respectively.θ represents the
angular position andJ is the moment of inertia.u is the motor
torque input. dm anddℓ represent the viscous damping coeffi-
cients at the motor side and the load side, respectively.k j andd j

are the stiffness and the damping coefficients of the reducer. The
gear ratio of the reducer is denoted byN. fmc and fℓc represent
the nonlinear Coulomb frictions at the motor side and the load
side, respectively.df m anddf ℓ represent the additional repetitive
disturbances at the motor side and the load side, respectively. θ̃ is
the transmission error of the harmonic drive, which is defined as
the deviation between the expected reducer output positionand
the actual reducer output position. It can be approximated with a
simple sinusoid as̃θ =Asin(2θ̇mt+φ), whereA is the amplitude
of the transmission error,φ is the phase, and the frequency is 2
times the motor side velocity [12].

The dynamic model for this setup can be formulated as

Jmθ̈m+dmθ̇m = u+d1−
1
N

[

k j

(

θm

N
−θℓ

)

+d j

(

θ̇m

N
− θ̇ℓ

)]

Jℓθ̈ℓ+dℓθ̇ℓ = k j

(

θm

N
−θℓ

)

+d j

(

θ̇m

N
− θ̇ℓ

)

+d2
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Load Side External 
Disturbance Setup

≈ 0.2m ≈ 0.28m

≈ 500N/m

FIGURE 3. Load Side Disturbance Setup for Single-Joint System

where

d1 = df m− fmcsgn(θ̇m)+
1
N

(

k j θ̃ +d j
˙̃θ
)

d2 = df ℓ− fℓcsgn(θ̇ℓ)−
(

k j θ̃ +d j
˙̃θ
)

Therefore, the above indirect drive model can be consideredas
a mismatched system described in (3)-(4) with the disturbance
d =

[

d1 d2
]T

. The two outputsqm and qℓ are the motor side
positionθm and the load side positionθℓ, respectively. Note that
d is repetitive ifqm andqℓ are repetitive. The continuous time
transfer functions from the inputs to the outputs become

Pmu(s) =
Jℓs2+(d j +dℓ)s+ k j

JmJℓs4+ Jds3+ Jks2+ k j(dm+dℓ/N2)s
(34)

Pℓu(s) =
d js+ k j

N [JmJℓs4+ Jds3+ Jks2+ k j(dm+dℓ/N2)s]
(35)

Pmd2(s) =
d js+ k j

N [JmJℓs4+ Jds3+ Jks2+ k j(dm+dℓ/N2)s]
(36)

Pℓd2(s) =
Jmis2+(d j/N2+dm)s+ k j/N2

JmJℓs4+ Jds3+ Jks2+ k j(dm+dℓ/N2)s
(37)

Pmd(s) =
[

Pmu(s) Pmd2(s)
]

, Pℓd(s) =
[

Pℓu(s) Pℓd2(s)
]

(38)

where

Jd = Jm(d j +dℓ)+ Jℓ

(

d j

N2 +dm

)

(39)

Jk = Jmk j +
Jℓk j

N2 +(d j +dℓ)dm+
d jdℓ
N2 (40)

System Disturbance Characteristics
In this setup, the identified Coulomb friction combined at the

motor side (i.e.,fmc+
fℓc
N2 ) is about 0.1004Nm. A fictitious torque

is added in the motor torque command to simulate the external
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FIGURE 4. Load Side Desired Trajectory

disturbancedf m at the motor side. In the following experiments,
df m is set as a 1Hz sinusoid starting from 3sec with an amplitude
of 0.2Nm, i.e.,df m= 0.2sin(2π(t−3))Nm. The repetitive exter-
nal disturbancedf ℓ at the load side is generated using the setup
shown in Fig. 3. It is designed to have the extension springs apply
a maximum disturbance of approximately 20Nm at the load side
when the payload hits the ball and continues rotating for about
14 degrees.

The motor side feedback controllerC designed for this setup
has a resonant frequency at about 11Hz for the velocity loop.
This corresponds to about 1 rad/sec at the load side. Therefore,
in order to amplify the transmission error effects, the loadside
desired trajectory is designed to have a speed of 0.5 rad/sec for
most time so that the resulting transmission error frequency will
coincide with the resonant frequency of the velocity loop . The
resulting trajectory is shown in Fig. 4, which is designed asa
fourth-order time optimal trajectory suggested in [13].

The effects of these different kinds of disturbances on the
load side tracking performance with the basic controller structure
(i.e.,C, F1, andF2 in Fig. 1) are illustrated in Fig. 5.

Algorithm Setup
The zero-phase acausal low-pass filtersQr andQu are ob-

tained asQr(z) = Qu(z) = Q1(z−1)Q1(z), whereQ1(z) is a low-
pass filter with a cut-off frequency of 30Hz, which is beyond the
system elastic anti-resonant and resonant frequencies. With this
selection ofQr(z) andQu(z), the frequency responses ofβr in
(20) andβu in (27) with±50% parametric uncertainties are plot-
ted in Fig. 6 to verify the monotonic stability condition.

Figure 6 shows that, using either motor side model or load
side model, the magnitudes ofβr andβu are always below 0dB
indicatingβr < 1 andβu < 1. Therefore, the monotonic stabili-
ties (20) and (27) are ensured separately for both ILC schemes.
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ric Uncertainties

Now consider the two-stage approach proposed in [6]. It
can be shown that, the approach in [6] with plant inversion learn-
ing filters can be reformulated similarly as the reference ILC (L)
with P̂u = P̂ℓu plus the torque ILC (M) withP̂u = P̂mu in this pa-
per. This means that the two-stage ILC scheme is performed with
mismatched nominal models. As expected, this will not help to
attenuate the model uncertainty but instead may even deterio-
rate the ILC convergence performance. To see this, the tracking
performances in the following experiments will be comparedin
three controller settings, i.e., reference ILC withP̂u = P̂ℓu only
(RefILC(L)), reference ILC withP̂u = P̂ℓu plus torque ILC with
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FIGURE 7. Performance Comparisons using Accurate Nominal
Model (After 10 Iterations)

P̂u = P̂mu (RefILC(L) + TrqILC(M)), and reference ILC with
P̂u= P̂ℓu plus torque ILC withP̂u= P̂ℓu (RefILC(L) + TrqILC(L)).

Experimental Results
Each controller setting is implemented to track the load side

desired trajectory in Fig. 4 for 10 iterations. First, the nominal
model with accurately identified system dynamic parametersis
used in the controller design. With an accurate nominal model, it
is expected that the three controller settings will performequally
well. As shown in Fig. 7, the load side position tracking errors
for these three settings are all significantly reduced to almost the
level of load side encoder resolution.

Next the three controller settings are compared using the
nominal model with 15% uncertainty in the dynamic parameters.
Normally, with larger model uncertainties, the cut off frequen-
cies ofQ filters need to be reduced to ensure the convergence
of the learning process. Here, theQ filters are kept the same as
the previous case in order to verify the benefits of the proposed
scheme. Fig. 8(a) shows that the torque ILC performs very well
once it is activated. No matter which nominal model is chosento
follow, the model following errors are greatly reduced withfast
convergence rate. As to the load side tracking performance,how-
ever, more differences are expected. It is shown in Fig. 8(b)that,
due to the model uncertainty, the setting RefILC(L) does notper-
form as well as before. The setting RefILC(L)+TrqILC(M) actu-
ally deteriorates the performance since TrqILC(M) is intended to
make the inner plant match with the motor side nominal model
while the load side behavior may actually deviate further from its
nominal behavior. In contrast, the setting RefILC(L)+TrqILC(L)
performs the best since it intends to make the inner plant behave
as the load side nominal model and thus greatly releases the un-
certainty burden on the reference ILC.
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CONCLUSIONS
In this paper, a model based two-stage ILC scheme was de-

veloped for a class of MIMO mismatched linear systems. To
improve the performance of the ILC stage aimed for tracking er-
ror reduction, another ILC utilizing the idea of model following
was designed to drive the inner plant to behave like the nom-
inal model. The convergence property was investigated with
properQ filter and learning filter design. In order to make the
two ILC stages work properly together, an ad hoc hybrid scheme
was proposed to make transitions between the two ILC stages.
A single-joint indirect drive system with several inherentand de-
signed external disturbances was utilized to experimentally val-
idate the proposed ILC scheme. It was shown that the proposed
hybrid two-stage ILC scheme using the load side nominal model
outperformed the other two benchmark controller settings in the
load side tracking application. The application extensionof this
work to a 6-joint robot manipulator has also been conducted and
the results will be reported in [14].
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